Settings
The Blind Watchmaker

The Blind Watchmaker

The Blind Watchmaker 25


  The second qualification is that the relationship that I am calling ‘enemy’ is more complicated than the simple bilateral relationship suggested by the stories of cheetahs and gazelles. One complication is that a given species may have two (or more) enemies which are even more severe enemies of each other. This is the principle behind the commonly expressed half-truth that grass benefits by being grazed (or mown). Cattle eat grass, and might therefore be thought of as enemies of grass. But grasses also have other enemies in the plant world, competitive weeds, which, if allowed to grow unchecked, might turn out to be even more severe enemies of grasses than cattle. Grasses suffer somewhat from being eaten by cattle, but the competitive weeds suffer even more. Therefore the net effect of cattle on a meadow is that the grasses benefit. The cattle turn out to be, in this sense, friends of grasses rather than enemies.

  Nevertheless, cattle are enemies of grass in that it is still true that an individual grass plant would be better off not being eaten by a cow than being eaten, and any mutant plant that possessed, say, a chemical weapon that protected it against cows, would set more seed (containing genetic instructions for making the chemical weapon) than rival members of its own species that were more palatable to cows. Even if there is a special sense in which cows are ‘friends’ of grasses, natural selection does not favour individual grass plants that go out of their way to be eaten by cows! The general conclusion to this paragraph is as follows. It may be convenient to think of an arms race between two lineages such as cattle and grass, or gazelles and cheetahs, but we should never lose sight of the fact that both participants have other enemies against whom they are simultaneously running other arms races. I shall not pursue the point here, but it can be developed into one of the explanations for why particular arms races stabilize and do not go on for ever — do not lead to predators pursuing their prey at Mach 2 and so on.

  The third ‘qualification’ to the simple arms-race is not so much a qualification as an interesting point in its own right. In my hypothetical discussion of cheetahs and gazelles I said that cheetahs, unlike the weather, had a tendency as the generations go by to become ‘better hunters’, to become more severe enemies, better equipped to kill gazelles. But this does not imply that they become more successful at killing gazelles. The kernel of the arms-race idea is that both sides in the arms race are improving from their own point of view, while simultaneously making life more difficult for the other side in the arms race. There is no particular reason (or at least none in anything that we have discussed so far) to expect either side in the arms race to become steadily more successful or less successful than the other. In fact the arms-race idea, in its purest form, suggests that there should be absolutely zero progress in the success rate on both sides of the arms race, while there is very definite progress in the equipment for success on both sides. Predators become better equipped for killing, but at the same time prey become better equipped to avoid being killed, so the net result is no change in the rate of successful killings.

  The implication is that if, by the medium of a time machine, predators from one era could meet prey from another era, the later, more ‘modern’ animals, whether predators or prey, would run rings round the earlier ones. This is not an experiment that can ever be done, although some people assume that certain remote and isolated faunas, such as those of Australia and Madagascar, can be treated as if they were ancient, as if a trip to Australia were like a trip backwards in a time machine. Such people think that native Australian species are usually driven extinct by superior competitors or enemies introduced from the outside world, because the native species are ‘older’, ‘out of date’ models, in the same position vis-à-vis invading species as a Jutland battleship contending with a nuclear submarine. But the assumption that Australia has a ‘living fossil’ fauna is hard to justify. Perhaps a good case for it might be made, but it seldom is. I’m afraid it may be no more than the zoological equivalent of chauvinistic snobbery, analogous to the attitude that sees every Australian as an uncouth swagman with not much under his hat and corks dangling round the brim.

  The principle of zero change in success rate, no matter how great the evolutionary progress in equipment, has been given the memorable name of the ‘Red Queen effect’ by the American biologist Leigh van Valen. In Through the Looking Glass, you will remember, the Red Queen seized Alice by the hand and dragged her, faster and faster, on a frenzied run through the countryside, but no matter how fast they ran they always stayed in the same place. Alice was understandably puzzled, saying, ‘Well in our country you’d generally get to somewhere else — if you ran very fast for a long time as we’ve been doing.’ ‘A slow sort of country!’ said the Queen. ‘Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!’

  The Red Queen label is amusing, but it can be misleading if taken (as it sometimes is) to mean something mathematically precise, literally zero relative progress. Another misleading feature is that in the Alice story the Red Queen’s statement is genuinely paradoxical, irreconcilable with common sense in the real physical world. But van Valen’s evolutionary Red Queen effect is not paradoxical at all. It is entirely in accordance with common sense, so long as common sense is intelligently applied. If not paradoxical, however, arms races can give rise to situations that strike the economically minded human as wasteful.

  Why, for instance, are trees in forests so tall? The short answer is that all the other trees are tall, so no one tree can afford not to be. It would be overshadowed if it did. This is essentially the truth, but it offends the economically minded human. It seems so pointless, so wasteful. When all the trees are the full height of the canopy, all are approximately equally exposed to the sun, and none could afford to be any shorter. But if only they were all shorter; if only there could be some sort of trade-union agreement to lower the recognized height of the canopy in forests, all the trees would benefit. They would be competing with each other in the canopy for exactly the same sunlight, but they would all have ‘paid’ much smaller growing costs to get into the canopy. The total economy of the forest would benefit, and so would every individual tree. Unfortunately, natural selection doesn’t care about total economies, and it has no room for cartels and agreements. There has been an arms race in which forest trees became larger as the generations went by. At every stage of the arms race there was no intrinsic benefit in being tall for its own sake. At every stage of the arms race the only point in being tall was to be relatively taller than neighbouring trees.

  As the arms race wore on, the average height of trees in the forest canopy went up. But the benefit that the trees obtained from being tall did not go up. It actually deteriorated because of the enhanced costs of growing. Successive generations of trees got taller and taller, but at the end they might better, in one sense, have stayed where they started. Here, then, is the connection with Alice and the Red Queen, but you can see that in the case of the trees it is not really paradoxical. It is generally characteristic of arms races, including human ones, that although all would be better off if none of them escalated, so long as one of them escalates none can afford not to. Once again, by the way, I should stress that I have told the story too simply. I do not mean to suggest that in every literal generation trees are taller than their counterparts in the previous generation, nor that the arms race is necessarily still going on.

  Another point illustrated by the trees is that arms races do not necessarily have to be between members of different species. Individual trees are just as likely to be harmfully overshadowed by members of their own species as by members of other species. Probably more so in fact, for all organisms are more seriously threatened by competition from their own species than from others. Members of one’s own species are competitors for the same resources, to a much more detailed extent, than members of other species. There are also arms races within species between male roles and female roles, and between p
arent roles and offspring roles. I have discussed these in The Selfish Gene, and will not pursue them further here.

  The tree story allows me to introduce an important general distinction between two kinds of arms race, called symmetric and asymmetric arms races. A symmetric arms race is one between competitors trying to do roughly the same thing as each other. The arms race between forest trees struggling to reach the light is an example. The different species of trees are not all making their livings in exactly the same way, but as far as the particular race we are talking about is concerned — the race for the sunlight above the canopy — they are competitors for the same resource. They are taking part in an arms race in which success on one side is felt by the other side as failure. And it is a symmetric arms race because the nature of the success and failure on the two sides is the same: attainment of sunlight and being overshadowed, respectively.

  The arms race between cheetahs and gazelles, however, is asymmetric. It is a true arms race in which success on either side is felt as failure by the other side, but the nature of the success and failure on the two sides is very different. The two sides are ‘trying’ to do very different things. Cheetahs are trying to eat gazelles. Gazelles are not trying to eat cheetahs, they are trying to avoid being eaten by cheetahs. From an evolutionary point of view asymmetric arms races are more interesting, since they are more likely to generate highly complex weapons systems. We can see why this is by taking examples from human weapons technology.

  I could use the USA and the USSR as examples, but there is really no need to mention specific nations. Weapons manufactured by companies in any of the advanced industrial countries may end up being bought by any of a wide variety of nations. The existence of a successful offensive weapon, such as the Exocet type of surface skimming missile, tends to ‘invite’ the invention of an effective counter, for instance a radio jamming device to ‘confuse’ the control system of the missile. The counter is more likely than not to be manufactured by an enemy country, but it could be manufactured by the same country, even by the same company! No company, after all, is better equipped to design a jamming device for a particular missile than the company that made the missile in the first place. There is nothing inherently improbable about the same company producing both and selling them to opposite sides in a war. I am cynical enough to suspect that it probably happens, and it vividly illustrates the point about equipment improving while its net effectiveness stands still (and its costs increase).

  From my present point of view the question of whether the manufacturers on opposite sides of a human arms race are enemies of each other or identical with each other is irrelevant, and interestingly so. What matters is that, regardless of their manufacturers, the devices themselves are enemies of each other in the special sense I have defined in this chapter. The missile, and its specific jamming device, are enemies of each other in that success in one is synonymous with failure in the other. Whether their designers are also enemies of each other is irrelevant, although it will probably be easier to assume that they are.

  So far I have discussed the example of the missile and its specific antidote without stressing the evolutionary, progressive aspect, which is, after all, the main reason for bringing it into this chapter. The point here is that not only does the present design of a missile invite, or call forth, a suitable antidote, say a radio jamming device. The antimissile device, in its turn, invites an improvement in the design of the missile, an improvement that specifically counters the antidote, an anti-antimissile device. It is almost as though each improvement in the missile stimulates the next improvement in itself, via its effect on the antidote. Improvement in equipment feeds on itself. This is a recipe for explosive, runaway evolution.

  At the end of some years of this ding-dong invention and counter-invention, the current version of both the missile and its antidote will have attained a very high degree of sophistication. Yet at the same time — here is the Red Queen effect again — there is no general reason for expecting either side in the arms race to be any more successful at doing its job than it was at the beginning of the arms race. Indeed if both the missile and its antidote have been improving at the same rate, we can expect that the latest, most advanced and sophisticated versions, and the earliest, most primitive and simplest versions will be exactly as successful as each other, against their contemporary counter-devices. There has been progress in design, but no progress in accomplishment, specifically because there has been equal progress in design on both sides of the arms race. Indeed, it is precisely because there has been approximately equal progress on both sides that there has been so much progress in the level of sophistication of design. If one side, say the antimissile jamming device, pulled too far ahead in the design race, the other side, the missile in this case, would simply cease to be used and manufactured: it would go ‘extinct’. Far from being paradoxical like Alice’s original example, the Red Queen effect in its arms-race context turns out to be fundamental to the very idea of progressive advancement.

  I said that asymmetric arms races were more likely to lead to interesting progressive improvements than symmetric ones, and we can now see why this is, using human weapons to illustrate the point. If one nation has a 2-megaton bomb, the enemy nation will develop a 5-megaton bomb. This provokes the first nation into developing a 10-megaton bomb, which in turn provokes the second into making a 20-megaton bomb, and so on. This is a true progressive arms race: each advance on one side provokes the counteradvance on the other, and the result is a steady increase in some attribute as time goes by — in this case, explosive power of bombs. But there is no detailed, one-to-one correspondence between the designs in such a symmetric arms race, no ‘meshing’ or ‘interlocking’ of design details as there is in an asymmetric arms race such as that between missile and missile-jamming device. The missile-jamming device is designed specifically to overcome particular detailed features of the missile; the designer of the antidote takes into account minute details of the design of the missile. Then in designing a counter to the antidote, the designer of the next generation of missiles makes use of his knowledge of the detailed design of the antidote to the previous generation. This is not true of the bombs of ever-increasing megatonnage. To be sure, designers on one side may pirate good ideas, may imitate design features, from the other side. But if so, this is incidental. It is not a necessary part of the design of a Russian bomb that it should have detailed, one-to-one correspondences with specific details of an American bomb. In the case of an asymmetric arms race, between a lineage of weapons and the specific antidotes to those weapons, it is the one-to-one correspondences that, over the successive ‘generations’, lead to ever greater sophistication and complexity.

  In the living world too, we shall expect to find complex and sophisticated design wherever we are dealing with the end-products of a long, asymmetric arms race in which advances on one side have always been matched, on a one-to-one, point-for-point basis, by equally successful antidotes (as opposed to competitors) on the other. This is conspicuously true of the arms races between predators and their prey, and, perhaps even more, of arms races between parasites and hosts. The electronic and acoustic weapons systems of bats, which we discussed in Chapter 2, have all the finely tuned sophistication that we expect from the end-products of a long arms race. Not surprisingly, we can trace this same arms race on the other side. The insects that bats prey upon have a comparable battery of sophisticated electronic and acoustic gear. Some moths even emit bat-like (ultra-)sounds that seem to put the bats off. Almost all animals are either in danger of being eaten by other animals or in danger of failing to eat other animals, and an enormous number of detailed facts about animals makes sense only when we remember that they are the end-products of long and bitter arms races. H. B. Cott, author of the classic book Animal Coloration, put the point well in 1940, in what may be the first use in print of the arms-race analogy in biology:

  Before asserting that the deceptive appearance of a grasshopper o
r butterfly is unnecessarily detailed, we must first ascertain what are the powers of perception and discrimination of the insects’ natural enemies. Not to do so is like asserting that the armour of a battle-cruiser is too heavy, or the range of her guns too great, without inquiring into the nature and effectiveness of the enemy’s armament. The fact is that in the primeval struggle of the jungle, as in the refinements of civilized warfare, we see in progress a great evolutionary armament race — whose results, for defence, are manifested in such devices as speed, alertness, armour, spinescence, burrowing habits, nocturnal habits, poisonous secretions, nauseous taste, and [camouflage and other kinds of protective coloration]; and for offence, in such counter-attributes as speed, surprise, ambush, allurement, visual acuity, claws, teeth, stings, poison fangs, and [lures]. Just as greater speed in the pursued has developed in relation to increased speed in the pursuer; or defensive armour in relation to aggressive weapons; so the perfection of concealing devices has evolved in response to increased powers of perception.